Ultrasensitive plasmonic sensing in air using optical fibre spectral combs

نویسندگان

  • Christophe Caucheteur
  • Tuan Guo
  • Fu Liu
  • Bai-Ou Guan
  • Jacques Albert
چکیده

Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture-a gold-coated highly tilted Bragg grating-that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10-8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods

An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...

متن کامل

Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers

Plasmonic nanoparticles with spectral properties in the UV-to-near-IR range have a large potential for the development of innovative optical devices. Similarly, microstructured optical fibers (MOFs) represent a promising platform technology for fully integrated, next-generation plasmonic devices; therefore, the combination of MOFs and plasmonic nanoparticles would open the way for novel applica...

متن کامل

Dressing plasmon resonance with particle-microcavity architecture for efficient nano-optical trapping and sensing.

We propose a particle-microcavity scheme for efficient optical trapping and sensing. When a resonant plasmonic nanoparticle (NP) is placed inside a microcavity with high Q-factor, sensitivity is enhanced in the far-field extinction while near-field around the NP is barely affected. Stable near-field and high sensitivity for optical trapping and ultrasensitive detection of nanosized targets are ...

متن کامل

Metamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers

The emerging field of plasmonic metamaterials has introduced new degree of freedom to manipulate optical field from nano to macroscopic scale, offering an attractive platform for sensing applications. So far, metamaterial sensor concepts, however, have focused on hot-spot engineering to improve the near-field enhancement, rather than fully exploiting tailored material properties. Here, we prese...

متن کامل

Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016